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Abstract
We discuss the unusual aspects of symmetry that can happen due to entropic
effects in the context of multi-scalar field theories at finite temperature. We
present their consequences, in particular, for the case of non-relativistic models
of hard core spheres. We show that for non-relativistic models phenomena like
inverse symmetry breaking and symmetry non-restoration cannot take place,
but a reentrant phase at high temperatures is shown to be possible for some
region of parameters. We then develop a model of interest in studies of Bose–
Einstein condensation in dilute atomic gases and discuss its phase transition
patterns. In this application to a Bose–Einstein condensation model, however,
no reentrant phases are found.

PACS numbers: 11.10.Wx, 03.75.Fi, 05.30.Jp

1. Introduction

One of the most interesting aspects concerning the studies of multi-field models at finite
temperature is the possibility of the emergence of a much richer phase diagram than one
would usually find in one-field types of models. The possibility that unusual symmetry
patterns could emerge in those models, for some specific region of parameters, has attracted
considerable attention in the literature (see, for instance, [1, 2] and references therein and [3],
in this volume, for a short review).

For most of the standard physical systems we know in nature, we have a good sense
of how symmetries seem to change as the temperature is changed. Typically, the larger the
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temperature the larger the symmetry exhibited by the system and vice versa. Examples of
this behaviour are expected to happen in the particle physics models, as in the electroweak
phase transition and possibly also in grand-unified models. The same is expected in much
lower energy systems, such as those of condensed matter. For example, the phase transition
in ferromagnets, superconductors, Bose–Einstein condensation of atomic gases, etc, just to
name a few systems. In all these examples we always go from an ordered (less symmetric)
phase below some critical temperature of phase transition to a disordered (more symmetrical)
phase above the critical temperature, or the opposite, if the temperature is decreased from a
high temperature (or symmetry restored) state [4].

However, the above symmetry aspects seem not to be the rule. In fact we are also becoming
increasingly aware that entropic effects in multi-field models may show other patterns of
symmetry breaking and restoration that are less usual. For example, many condensed matter
systems, like spin glasses, compounds known as manganites, liquid crystals and many others,
commonly show phenomena like reentrant phases of lower symmetries at higher temperatures
and, therefore, they can exhibit unusual phase diagrams that we would otherwise not expect.
Many of these systems have recently been reviewed in [5]. Concerning quantum field theory
models, the possibility of other phase transition patterns was also shown to be possible in
the context of multi-scalar field theories at finite temperatures [1]. These models show the
possibility of a symmetry that is not broken at low temperatures, getting broken at high
temperatures (what is called inverse symmetry breaking). Another case that seems possible is
a symmetry that is broken at lower temperatures, not getting restored at all as we go to higher
temperatures (what is called symmetry non-restoration). The problem of how a symmetry
broken or restored phase may emerge as a reentrant phase in the system, as is seen in many
low energy condensed matter systems, was recently analysed in [2] in the context of a coupled
non-relativistic model of two scalar fields.

The plan of this paper is as follows. In the next section we briefly review the results
obtained in [2] for the case of a non-relativistic model of two scalar fields with overall symmetry
U(1) × U(1) and show that it admits reentrant phases for some region of parameters. One
possible physical realization of this kind of model is, for example, in the description of a
coupled two-species dilute atomic gas system. This is a kind of system in atomic physics
which has been of great interest recently concerning studies (both theoretical and experimental)
of Bose–Einstein condensation. In section 3 we offer a quantum field theory description for
this problem. We then analyse the possibility of emergence of reentrant phases in the quantum
field formulation for these systems. This would be novel symmetry behaviour that could be
of great interest, given its possible implementation in the laboratory. Our results allow us to
conclude, at the level of our approximations, on the non-appearance of such reentrant phases
in these kinds of coupled dilute atomic gases systems.

2. Reentrant phases in non-relativistic multi-scalar field models

We start our discussion by considering the following non-relativistic Lagrangian density model,
of two (complex) scalar fields � and �, with global symmetry U(1) × U(1),

L(�∗,�,�∗, �) = �∗
(

i∂t +
1

2m�

∇2

)
� − µ��∗� − g�

3!
(�∗�)2

+ �∗
(

i∂t +
1

2m�

∇2

)
� − µ��∗� − g�

3!
(�∗�)2 − g(�∗�)(�∗�). (1)

The model (1) can be thought of as coming from the non-relativistic limit of a corresponding
relativistic counterpart, as shown explicitly in [2]. In (1) the interaction parameters g� and g�
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describe two-body self-interaction terms, as commonly considered for dilute and cold (low
energy) systems of particles [6], in which case only binary type interactions, i.e., hard core
type of interactions of the form shown in (1), are relevant. g is the cross-coupling between the
two fields, which we consider here as a quadratic type of interaction. The mass parameters
m� and m� are the masses for the fields (or particles). The one-body type of interactions, of
magnitude µ� and µ� , can either represent the effect of external potentials (for example a
magnetic field) on the system, internal energy terms (like the internal molecular energy relative
to free atoms in which case the fields in the Lagrangian would be related to molecular dimers),
an explicit gap of energy in the system (as in superconductors), or just chemical potentials
added to the action in the grand-canonical formulation to enforce finite density (or fixed
number of particles) for both � and �. The latter will be the case for our application of (1) to
the coupled atomic gas problem in section 3. Here we will just consider the µi parameters as
constant one-body parameters added to our model such that the possible symmetry breaking
patterns, depending on the sign of µi (i = �,�), can easily be determined from the potential
term in (1). This is just what is done in spontaneous symmetry breaking studies performed
on the relativistic analogous models. Therefore, for µi > 0, we have an initially symmetry
restored phase in both � and � directions, while µi < 0 corresponds (at zero temperature) to
symmetry broken phases for both � and �.

We require the model (1) to be overall bounded from below, which then gives the constraint
condition on the two-body interaction terms, g� > 0, g� > 0 and g�g� > 9g2. This is the
same condition imposed on the analogous relativistic problem [1, 2]. This boundness constraint
will be observed in all our results below. Non-trivial phase transitions can emerge for negative
values of the cross-coupling g, which is allowed by the above boundness constraint. This was
shown in diverse instances to be the case in the relativistic analogous models [1, 3].

In the analysis below, we will also restrict ourselves, for simplicity, to an initial symmetry
restored phase (at zero temperature) for both fields, µi > 0 and leave the symmetry broken
case for the Bose–Einstein condensation problem studied in section 3. The phase structure
of the model is then determined by the sign of the temperature dependent one-body terms,
µi(T ) = µi + �i , where �i is the field temperature dependent self-energy. We look for an
intermediate (reentrant) phase at some interval of temperature and parameters in which the
symmetry in one of the field directions is broken. This analysis can in principle be carried out
within perturbation theory, as described in a companion paper [3], which indeed shows the
possibility of appearance of reentrant phases for a system of hard-core particles described by
(1). However, the results in [2, 3] also show that as the (perturbative) temperature corrections
are considered for the two-body terms, g�(T ), g�(T ), these effective couplings run to negative
values above some temperature Tneg. This then violates the initial condition of boundness for
the potential when considering the model in equilibrium in a thermal bath with temperature
T > Tneg. At the leading order perturbative calculation and assuming µ� = µ� = µ and
m� = m� = m, Tneg � min

(
12π

√
µ/(2m3)g�

/(
5g2

� + 9g2
)
, 12π

√
µ/(2m3)g�

/(
5g2

� +
9g2

))
. This is reminiscent of the breakdown of perturbation theory in quantum field theory

at finite temperature, which is well known in relativistic models (see e.g. [7] and references
therein). Non-perturbative methods are then called for a proper interpretation of the results
to confirm that the appearance of reentrant phases in our model is not just an artefact of
perturbation theory.

The problem of the self-couplings running to negative values at high temperatures can
be solved, e.g., by resumming all leading order bubble corrections to the couplings. This
is naturally done in the context of the renormalization group, by solving the flow equations
for all couplings and parameters of the model. A simpler and equivalent approach was also
shown in [2], where this resummation is also accomplished by solving a set of self-consistent
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Figure 1. A phase diagram of the system in terms of g� and temperature, for the parameters
considered in the text. The dark grey region denotes a reentrant phase with symmetry breaking
(SB) in the � direction, µ�(T ) < 0. The region below it, in light grey, is the unstable region,
RNR(T ) < 1 and above it is a symmetry restored (SR) phase, µ�(T ) > 1. Temperature is given
in units of eV.

homogeneous linear equations for all effective couplings, g�(T ), g�(T ) and g(T ), and the
result of these equations fed back into the equations for the effective one-body terms, µi(T ).
We refer the interested reader to [2] for the details and we give here only the main results of
this approach.

We consider, for illustrative purposes, the parameters (at T = 0): g� = 2 ×
10−15 eV−2, g = −10−16 eV−2, m� � m� = 1 GeV and µ� = µ� = 1 neV. These
values of couplings and masses could for instance be representative of some dilute Bose gas
atom or molecule (see next section). The temperature and the tree-level value of g� are then
changed and we look for regions of symmetry broken phase in the � field direction (for the
values of parameters considered, it easy to show that the symmetry remains always restored
in the � direction [3]). For all values of parameters and temperature considered we check the
boundness condition extended for the effective couplings (temperature dependent), as obtained
by the flow equations described previously. That is, g�(T )g�(T ) > 9g2(T ), or that the ratio
RNR(T ) = g�(T )g�(T )/[9g2(T )] > 1. The resulting phase diagram, as a function of g� at
T = 0 and the (log of the) temperature, is shown in figure 1.

Figure 1 shows clearly the possibility of reentrant phases in the system, through an inverse
symmetry breaking, in the � direction. For instance, for g�(T = 0) = 10−16 eV−2, we find
a reentrant symmetry broken phase starting at the temperature T

(ISB)
c,� � 3.4 × 10−4 eV (or

∼4 K) and ending at T
(SR)
c,� � 1.4 × 10−2 eV (or ∼161 K), through symmetry restoration. In

this region of temperature and parameters, RNR(T ) > 1 and the (effective) potential is still
bounded from below. In the � direction there is no symmetry breaking nor reentrant phases
at any temperature for the parameters considered.

3. Application to a coupled two-species dilute and homogeneous atomic Bose gas model

Let us now consider the case of model (1) as describing two coupled Bose gases of fixed
densities ρ� and ρ� , respectively. The model could then be describing a system composed of
a mixture of coupled atomic gases, such as those recently produced [8], with the same chemical
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element in two different hyperfine states, or even two different mono-atomic Bose gases in the
homogeneous case [9]. Here µ� and µ� are then explicitly chemical potentials added in the
grand-canonical formalism to ensure the fixed densities for each Bose atom gas. Here we start
describing the system in the broken phase in both � and � directions. Therefore, µ� → −µ�

and µ� → −µ� in (1) and these chemical potentials are taken as positive quantities and
with their values determined by the usual thermodynamic relation, in terms of the pressure
P(T ,µ�,µ�),

ρ� = ∂P (T , µ�,µ�)

∂µ�

, ρ� = ∂P (T , µ�,µ�)

∂µ�

, (2)

where the pressure is defined as the negative of the effective potential computed at its minima
(which is the thermodynamic free energy of the system),

P ≡ P(T ,µ�,µ�) = −Veff(T , φ0, ψ0)|φ0=φm,ψ0=ψm
, (3)

where φm and ψm are the values of φ0 and ψ0 that extremize (corresponding to a minimum
of) the effective potential,

∂Veff(T , φ0, ψ0)

∂φ0

∣∣∣∣
φ0=φm,ψ0=ψm

= 0,
∂Veff(T , φ0, ψ0)

∂ψ0

∣∣∣∣
φ0=φm,ψ0=ψm

= 0. (4)

The effective potential follows from (1) by expanding the fields around the vacuum expectation
values, 〈�〉 = φ0/

√
2 and 〈�〉 = ψ0/

√
2, and it is evaluated in the one-loop approximation

in a standard computation of quantum field theory at finite temperature (for the one-field case,
see for instance [10]). At the tree-level, φm and ψm are given in terms of the minima of the
potential in (1),

φ2
m = 6

g�µ� − 3gµ�

g�g� − 9g2
, ψ2

m = 6
g�µ� − 3gµ�

g�g� − 9g2
. (5)

At finite temperature, the equations for φm and ψm are given by analogous expressions to (5),
but in terms of the effective chemical potentials instead, µ̄� and µ̄� , that are defined by the
solution of the self-consistent equations, µ̄� = µ� − �φ,φ and µ̄� = µ� − �ψ,ψ , given in
terms of the � and � field self-energies �.

The explicit expression for the pressure at finite temperature, obtained from the effective
potential as described above and that follows from some lengthy but straightforward
calculation, is given by

P(T ,µ�,µ�) = 3

2(g�g� − 9g2)

[
g�

(
µ2

� − �2
φ,φ

)
+ g�

(
µ2

� − �2
ψ,ψ

)
+ 6g(�φ,φ�ψ,ψ − µ�µ�)

] −
∫

d3q
(2π)3

(Ā+ + Ā−)

∣∣∣∣ψ0=ψm

φ0=φm

− 1

β

∫
d3q

(2π)3
[ln(1 − e−βĀ+) + ln(1 − e−βĀ−)]

∣∣∣∣ψ0=ψm

φ0=φm

, (6)

where

Ā2
± = H̄�Ḡ� + H̄�Ḡ�

2
∓ 1

2

[
(H̄�Ḡ� − H̄�Ḡ�)2 + 4g2ψ2

mφ2
mḠ�Ḡ�

]1/2
, (7)

and

H̄� = q2

2m�

+
g�

3
ψ2

m, Ḡ� = q2

2m�

, H̄� = q2

2m�

+
g�

3
φ2

m, Ḡ� = q2

2m�

.

(8)
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H̄ i and Ḡi denote the Higgs and Goldstone modes, respectively, for each field in the broken
phase.

From (2) and after some algebra to eliminate the dependence of these expressions on
the chemical potentials, we find the expressions relating the total densities ρ� and ρ� to (the
condensate densities) ψm and φm, as given by

ρ� = ψ2
m

2
− 1

2

∫
d3q

(2π)3

[
∂Ā+

∂µ�

(
1 + 2nĀ+

)
+

∂Ā−
∂µ�

(
1 + 2nĀ−

)]
, (9)

and

ρ� = φ2
m

2
− 1

2

∫
d3q

(2π)3

[
∂Ā+

∂µ�

(
1 + 2nĀ+

)
+

∂Ā−
∂µ�

(
1 + 2nĀ−

)]
, (10)

where nĀ± = 1/[exp(βA±) − 1] and the partial derivatives of Ā± with respect to µ� and µ�

are defined by

∂Ā+

∂µ�

= − (H̄� + Ḡ�)

4Ā+

[
1 +

(H̄�Ḡ� − H̄�Ḡ�) − 2g2φ2
mψ2

mḠ�√
(H̄�Ḡ� − H̄�Ḡ�)2 + 4g2φ2

mψ2
mḠ�Ḡ�

]
,

∂Ā+

∂µ�

= − (H̄� + Ḡ�)

4Ā+

[
1 − (H̄�Ḡ� − H̄�Ḡ�) + 2g2φ2

mψ2
mḠ�√

(H̄�Ḡ� − H̄�Ḡ�)2 + 4g2φ2
mψ2

mḠ�Ḡ�

]
,

∂Ā−
∂µ�

= − (H̄� + Ḡ�)

4Ā−

[
1 − (H̄�Ḡ� − H̄�Ḡ�) − 2g2φ2

mψ2
mḠ�√

(H̄�Ḡ� − H̄�Ḡ�)2 + 4g2φ2
mψ2

mḠ�Ḡ�

]
,

∂Ā−
∂µ�

= − (H̄� + Ḡ�)

4Ā−

[
1 +

(H̄�Ḡ� − H̄�Ḡ�) + 2g2φ2
mψ2

mḠ�√
(H̄�Ḡ� − H̄�Ḡ�)2 + 4g2φ2

mψ2
mḠ�Ḡ�

]
.

(11)

The coupled equations (9) and (10) give completely the phase diagram for the condensates
ψm and φm as a function of the temperature and the densities. A qualitative analysis of the phase
structure is also possible to be deduced already at this level from equations (9), (10) and (11).
Note that for g = 0, from (7) we obtain that Ā2

+(g = 0) = H̄�Ḡ�, Ā2
−(g = 0) = H̄�Ḡ� ,

and we obtain the Bogoliubov spectrum [6] for each field in the uncoupled case. Also, (9) and
(10) decouple and we obtain as a result, for example for ρ�,

ρ� = φ2
m

2
+

1

2

∫
d3q

(2π)3

q2

2m�
+ g�φ2

m

6√
q2

2m�

( q2

2m�
+ g�φ2

m

3

)

1 +

2

exp
(
β

√
q2

2m�

( q2

2m�
+ g�φ2

m

3

)) − 1


 , (12)

with an analogous equation for ρ� . Taking (12) at the critical point, T = Tc,�, we
have that φm(T = Tc,�) = 0, since the condensate density at Tc vanishes and (12) gives
ρ� = ∫

d3q/(2π)3[exp(q2/(2m�Tc,�))−1]−1, or inverting it, Tc,� = 2π/m�[ρ�/ζ(3/2)]2/3,
where ζ(3/2) � 2.612. This is the standard result for the critical temperature of a
homogeneous ideal Bose gas. This result emerges because of the level of approximation
we are considering. It is only modified by corrections due to the self-interactions through
non-perturbative methods and it requires at least second-order corrections in the self-energy
(see, for instance, [11] and references therein).

Note also that, at the level of approximation we are considering, from equations (7), (9),
(10) and (11), if any of the fields go above the transition point (either φm = 0 or ψm = 0)
the two equations (9) and (10) also decouple, becoming independent of each other, since the
cross-coupling term in (7) and (11) always appears multiplying both φm and ψm. As a result,
no reentrant phase at high temperatures seems to be possible here. A computation performed
in the restored phase case (similar to the one done in section 2) also seems to confirm this
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result. This comes about as a consequence of the strong temperature dependence introduced
by the chemical potentials through the relation (2) in both the broken and symmetric cases.
In the broken (BEC) phase, it is also seen that the system exhibits a small dependence on the
cross-coupling term (at one-loop order it is even insensitive to the sign of g). A thorough
analysis of the phase structure coming from the coupled set of equations (9) and (10), including
higher order terms, will be presented elsewhere [12].
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